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field theories 

T A Wgis 
Man-Flanck-litstitat fur Polymerfoischung, Ackemannweg 10, Fa Box 3146, D-6500 
Maztu, Federai Republic of Germany 

Reeelred 19 December IY79, in final form 5 August 1991 

AtstrPct. This paper denves a bosonic and femionlc field theory for inndomly dasaed 
polymers The boronic field tneory needs replicas and :LIS shown that tbe problem can be 
mapped m an O(n) symmetric hgiangian with an atmetwe 8' term .fie fenuonic 6eid 
theory introducer alternat~rely anlicommularieg helds and a supcisymmetnc Lagrangian 
LS derived for the randomly dwcted polymer 

1. hoboduction 

The problem of random directed polymers has been recognized as a rich problem in 
many branches of theoretical physics and statistical mechanics. The propagator of a 
polymer in a random poteutirl is given by the following path integral (see e.g [I]). 

where AY is the end point of the polSmer, N its total contour length, d the space 
dimension, I the elementarg step length. 2nd u(r) the random potential which is 
assumed to be of Gaussian nature, i.e. 

(V(r, sN=O (V(e, s) Y(P', s')) = 8 6 ( r -  r')s(s - s'). (3 
It has been shown that &%e solutiop of this problem is mathematically equivalent to 
the growth model ofthe Eden iype [2],  a randomly stirred Euid whose hydrodynesics 
is approximated by Burger's equation (3. Relationships to spin glasses and travellins 
wavefronts have also been pointed out [4]. Morecyer it has also been speculated that 
there exists a superuniversal law for the end to end vec?or, le. R - X2/' for such 
problems [sa]. More recentiy it has been shown that this exponent reduces io + as 
d -f [%I. Polymers 1x1 random media have been revisited recently by Parisi [6] in 
two dinemions where it was shown that the replica symmetry is weakly broken. 

The dennition m (1) can be read twofold. First a ir stands ir defines a random 
directed polymer ia ( d  - 2 )  dimensions and we have used the same definition as in 
[%I, i.e. the vector r refers to the d -. 1 transverse direcrions and the s to the longiindinal 
one. On the other hand i4 can be read a an unconstrained pdymer in the dimensions 
in a random potential. We will, in the following, mostiy dea: v,;,rth the second definition 
where we will recover several known results discussed at the cnd of the paper. But 
one can immediately generalize what *we wili derive with respect to the pioblem of the 
random directed polymer. 
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5322 T A  Vilgis 

In this paper we derive field theories For the problem of such random polymers. 
We therefore consider a sonventionat approach where we use commutating fields. in 
this case we recover an Ofn) symmetric field thcory with an attractive +4 term in the 
limit n+O. This field theory has some similanties to that of electrons in random 
potentials (see e.g. 171). leading to nonlinear o-models [Si. 

The second equivalent field theory uses anticommutating fields (see e.g. [9]). The 
advantage of that representation is that the n + 0 limits can he avoided. The resulting 
Lagrangian ixsluding fermionic and bosonic fields is supersymmetric. Moreover it has 
a negative coupling constant in comparison with the fermionic Lagrangian of ordinary 
self-avoiding walks [IO] indicating the different nature of the problem. 

2. Tbe ~ Q S Q E I ~ C  Geid fheorj 

Iu this section we derive the conventional field theory for randomly directed polymers. 
We stan from ( - 1  which reads in its normalized form 

v 1 I q - x  

D ~ S )  exp[ -4 - JON \as -JON ds v([+)])) 
(3) 1 Dits) e n p ( - ~ ~ o N  ds(E)2-joNds V([r(s)])} 

where vie have set E = 1 and dropped the explicit s dependence of the potential for 
simplicity. The progpagator G(R, N, [VI) can altematlvely be generated by the differen- 
tial equation, which corresponds to the path integral in the numerator [U], i.e. the 
diffusion equation 

I G(E: N [  VI)  = r(Q1=O 

(A-$.'+ Vr))G(R, K [ V l ) = 6 ( W ( W  (4) 

which reads in Laplace trensfom with respeci IO N 

( E  - :V2+ V ( r ) )  G(R, E, [ VI) = 6(B). (40) 

Thus we cen construct a field theory from the Gaussian integral 

f C . , ~ ~ \  I , _ \  I , - \  ...~~i I- s.. c >~., ,,~\c-*,- .I P ,",,,,,_,I 
"~""'~ (5) 

J "PPIPl9liKiTPIvJ~~P~-J Or J UT P \ V l W  lrsr,nx L 

G(E?,E,[V])= 1 S+p(,) exp{-j dP clp'+(~)G-'(r, Y', E, [V])+(F)] 

where G-'(P, I', E[V'J)  ir given by the differential equation (4a),  and we can write for 
the propagator 

j s+(r)+(n)+(o) exp - dr+(p)(E-v')+(r)- dp@(r)V(r) l i  I G(B, E, [VI) = 1 6 g ( r ) e r p r I  dr+(r)(E-V2)+(~)- 
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In order to average over the Gaussian potential V [ r ]  which appears in the numerator 
and denominator we use the standard replica trick 

G(R,E,[V])=lim S$$(W)$(O)Z"-'LVl 

(7) 

"-0 I 
xexp - dr$(r)(E-V')+(v)- 

m = l i m  j ii WA-)+,(N+,W e x p { - ~ ( [ ~ >  

I I  
After straightforward manipulation we find the represzntation 

(8) 
"-0 a= ,  

?his is now a $4-theoq, but with an attractive interaction term - A ( @ i p .  This 
Lagrangian is ofthe same type as in the field thzory of the electron localization problrm, 
except one has there Two fields +, since the two panicle Green function is studied 
(see (3.5) in [7]). The kat term in the Lagrangian (9) couples tw'o replicas of the fields 
and is h a  been shown by Parisi E61 that the repSca symmetry is broken. In  161 entirely 
different methods bave been used so that it would be interesting to derive the weak 
rzp!ica symmetry b ~ e a k i z ~ ~  from the held theory, It would also he Interesting to c o ~ ~ e c t  
the problem of a polymer in a random potential to the electron localization problem. 
There is obviously a deeper connection since the interaction term in the corresponding 
Lagrangians ar? ideaticd. One can employ similar techniques as developed in 171 in 
order to obtain a nonlinear U-model. On the other hand regularization techniques hzve 
bee:. deveioped to renonnalize the g$4-theories where g is negative [12]. 

3. The hewaionie field tiamry 

In order to derive the fermionic field theory we stan from (3)-(Q) and we notice that 
the inverse of the paniiiot function can Se written as 

z 
(10) -- -&(E - V2+ V(r)). 

VI 
This determinant can be generated by an integration over anticcamntating fields $+(TI 
and $ ( r )  and it becones 

Thus we can wrik for the propagator G(R, E, [ V I )  
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The average over the quenched random potential can now be canied out and we find 

F R T =  1 s 4 ( r ) s 4 ' ( s ) s * , ( ~ ) 4 ( ~ ) $ ( ~ )  exp( -1 dr-%i-A 1 dr($2++i*)2] (13) 

which can be further treated by a Gaussian transformation. which decouples the $'4+$ 
and ($'$)2 terms to the standard form 

r > 
-E)= J s + ( r ) w -  ( p ) s w ) s n ( r )  exp{-J drie,,,(4,4 -, *, .)j 

%",, = + ( r ) ( E  -W$(d + *'(P)(E - V 2 ) 4 ( p )  

(14) 

where 

+2a .(l)($2(P)+*+(p)~(?))+f.2(l) (19  

which is indeed ofthe standard supersymmetii,: form [IO]. This Lagrangian is invanant 
under super-rotations. The main diiiereme eo the corresponding Lagrangian of the 
self-2voiding walk is the positive coupling constant A which is here a measure for the 
disorder of the potential. The supersymmetric Lagringian for the SAW is recovered if 
we put A+-A which introduces the imaginary unit i in front of the (~$~+(ll+$) term 
(see [lo] for the discussion). 

4. Snmapgi 

In this paper we derived two field theories for randomly directed polymers. The first 
one was the bosonic field theory, which xses commutating Gelds. The denominator 
has heen removed by the replica method beFore the average over the random potential 
%...'...~~&.,..- - . C - , J * L  _I c,,..," ._..._-._ :,.,.."-"-,.:,.",..-fi, 
l i H S  oecn LaEC11. :,,e "FIU ,r,cury iuLLGapurtua L Y  all VI,', >y,uumX,*.- ~ ~ ~ l ' u . ~ ' a . '  ,n - Y; 

with a negative as it is observed ia the electron localization problem [7]. One ran 
decouple the term by introducing new (order piameter) fields Q.6 by a 
Gaussian transformation to proceed Curther. This. can be seen as follows. Wz can use 
a Gaussian traiisfonnation 
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This is now cf the same form as the field theory derived in [7]. The consequences of 
this will be left to an extended paper. 

The second tgpe of field theory introduwd two fermionic fields Jr', Q to remove 
the determinant in the denominator of the Green function. We derived a simple 
supersymmetric Lagrangian analogously to that of the ordinary self-avoiding walk [lo] 
but with an effective attractive coupling constant, which signals the different nature 
of the problem. The random potential produces an attractive interaction. T h ~ s  can be 
seen directly if we write the pa3itioa function ofthe polymer in the random potential 

- 
and cakulata the quenched average by the replica method, i.e. logZ= 
limn*o (Z" - l)/n We find inmediately: 

i e. n random walks which attract each otber and themselves with a short range potential 
of strength A. This attraction is also present in the corresponding field theories which 
are derived :n this paper. In (19) we have the corresponding theory in E ( s )  space, 
which has been studied by several authors. For example the same theory as given in 
(13) has been obtained by the smdy of the problem of polymers at the presence of 
fixed obstacles [I3]. The aulho~s in [I31 used a variational p~ncipie  to approximate 
the path integral given in equation (1SJ. The corresponding annealed problem (moving 
obstacles) has been considered in [14]. The probiem has also been addressed by scaling 
arguments of the Flow type (see e.g. [IS, 161 and references therein). 

Tue next step is now to use the field theolies dcnved in this paper to ca!c~late 
physical observables. This will be done in an extended paper. 
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