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Random directed polymers and their bosonic and fermionic
field theories

T A Vilgis

Max-Planck-Institut fur Polymerforschung, Ackermanaweg 10, PG Box 3148, D-6500
Mainz, Federai Republic of Germany

Recerved 19 December 19270, 1 finzl form 5 August 1951

Abstract. This paper derrves a bosomc and fermionic field theory for randomly directed
poiymers The boson:c field theory needs replicas and 1 1s shown that the problem can be
mapped 11 an O(n} symmetnc Lagrangian with an attractive #* term The fermionic field
theory mtroduces alternatively antrcommutaung helds and a supersymmeinic Lagrangian
15 derived for the randomly directed polymer

1, Imtroduction .

The problem of random directed polymers has been recognized as a rich problem in
many branches of theoretical physics and statisticel mechanics. The propagator of a
polymer in a random potentizi 1s given by the following path integral (see e.g [1]).

HN)=R N!ar 2 M
G(R, ) z-{ Dr(s) exp{——2l J \a_é) _J‘ ds V(r{s), S)} (1)

r(0j=0 Q o

where B is the end point of the polymer, N its total contour length, 4 the space
dimension, ! (he elemeniary step lenpth, and »{r) the random potential which is
assumed to be of Gaussian nature, i.e.

{V{r,sh=0 (V{7 s}V, &) =28(r—r)8(s-5"). )

it has beea shown that the soiutior of this problem is mathematically equivalent to
the growth model of the Eden type [2], a randomly stirred fivid whose hydrodynamics
is approximated by Burger's equation (3). Relationships to spin glasses and travelling
wavefronts have also been pointed out [4]. Moreover it has also been speculated that
there exists a superuniversal law for the end to end vector, 1e. B~ N?? for such
problems [52]. More recently it has been shown that this exponent reduces io 1 as
d = [5b]. Polymers 1n random media have been revisited recenily by Paris1 {6] in
twe dimensions where it was shown thai the replica symmetry is weakly broken.

The definition m (1) can be read twofold. First as it stands it defines a random
directed polymer in (4 --1) dimensions and we have used the same definition as in
[5a],i.e. the vector r refers to the d ~ 1 iransverse directions and the 5 to the longitudinal
one, On the cther hand it can be read 2s an unconstrained p~lymer in the dimensions
in a random potential. We will, 1 the following, mostiy deal wich the second definition
where we will recover several known resulis discussed at the ead of the paper. But
one can immediately peneralize what we will derive with respect to the problem of the
random direcied polymer.
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In this paper we derive field theories for the problem of such random polymers.
We therefore consider a conventional approach where we use cominutating fields. In
this case we recover an O{#n) symmetric field theory with an attractive ¢* term in the
Iimit n-0. This field theory has some similarties to that of electrons in random
potentials (see e.g. {71}, leading to nonlinear o-models [8].

The second equivalent field theory uses anticommutating fields (see e.g. [9]). The
advantage of that representation is that the n - 0 limits can be avoided. The resulting
Lagrangian including fermionic and bosonic fields is supersymmetric. Moreover it has
a negative coupling constant in comparison with the fermionic Lagrangian of ordinary
self-avoiding walks [ 10] indicating the different nature of the problem.

2. The bosenie feid theory

Ix: this section we derive the conventional field theory for randomly directed polymers.
We start from () which reads in its normalized {form

HNy=R N
j ’ nr(s}exp{-gij ds(‘“’) —_f dsV([r(s)l)}
< 40 1]

G{E N[V]}= £(6)=8

N N
J Br(s) exp{*gL ds(ji) —L ds V({r(s)])}

where we have get /=1 and dropped the explicii s dependence of the potential for
simplicity. The progpagator G(&E, N, [ V]) can alternatively be generated by the differen-
tial equation, which corresponds to the path integral in the numerator [11], ie. the
diffusion squation

(3)

(;%_E_ivz*" V(r))(}(}fe N [V]) =6(R)8(N) )

WOz

which reads in Laplace (rensform with respeci to ¥V
(E—ffv% V(r)) G(R E.[V])=8(B). (4a)

Thus we can construci a field theory from the Gaussian integral

8 (P (R () ex?l_f d?f T -

Py
s B LV

bl

P Y g aad ¥ Y
PAFILT A

G(R E[V]=

Sé(#) e‘cp{ J‘ dr J d#' p(r)G (5 ¥, E,[VDo(r)

whers G e, ¢, E[V] is gzven by the differential equation (4a), and we can write for
the propagator

j 36()9(R)6(®) exp] - [ aroE-v9009 - [ argitr) v}

G(R, E [V])= =
j Sb{r) exp{—j dr¢(r)(E—V"")¢(r)——J de g (#) V(F)}

!il

?—j 3¢ (righ(R) ()

r--|

XX [ de (2 E -V }é{r} j dr V(r)c,bz(r)} {6)
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In order to average over the Gaussian potential V[r] which appears in the numerator
and denominator we use the standard replica trick

G(R, E,[V]) =lim j. 8¢ ¢(R)$(8)Z" V]

x exp{-f dr $(PI(E = 97)b(e) - f dr V{r)¢2{r‘)}- 1)
After straightforward manipulation we find the representation

G, B =linm f 11 86,(2)6:(R):(0) exp{~([6.,D) (®)
with the Lagrangian

#1¢]= jr d"{é] 6.(E-V)4, "““(é: ¢‘~;)2}. ©)

This is now a ¢*-theory, but with an attractive interaction term —A{g?)" This
Lagrangian is of the same type as in the field theory of the electron localization problem,
except one has there two fields ¢, since the two pariicle Green function is studied
(see (3.5) in [7]). The sast term in the Lagrangian (9) couples two replicas of the fields
and is hes been shown by Parisi [6] that the repiica symmeiry is broken. In [6] entirely
different methods bave been vsed so that it would be interesting to derive the weak
replica symmetry breaking from the field theory. Tt would aiso be interesting to connsct
the problem of a polymer in a randam petential to the clectron localization problem.
There is obviously a desper connection since the interaction term in the corresponding
Lagrangians are ideatical. Gne can employ similar techinigues as developed i {7] in
order to obtain a nonlinear o-model. On the other hand reguiarization technigues have
been developed to renormalize the g¢*-theories where g is negative {121,

3. The fermionic fisld theory

In order to derive the fermionic fisld theory we siart from (3)-(6) and we notice that
the inverse of the partition function can be written as

1 _ _ 92 )
7V det(E - V94 V(#)). (1)

This determinant can be generated by an integration over anticesnmnutating felds ¥ (#)
and (7} and it becomes

1
E‘;TJ. 8y &y BXP{—J EriT(:HE-V+ V(F))df(i‘)}- (11)

Thus we can wrile for the propagator G(R, E,[V])

G(R,E[V]) = f B (21847 (F)OP(IIH(R)H(E)
xexp{— [ arfate)(E 760+ 6 ()2 - T230t0)

+ V(?){¢2(f}+¢+(é’)w(?})3}- (12}
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The average over the quenched random potential can now be carried out and we find
GRE)= I 8 (r)8y™ (r)S(r) o (R) b(0) eXP{“J dr€e+4 '!. df(¢2+¢'+'!f)2} (13)

which can be further treated by a Gaussian transformation. which decouples the 2™y
and (¢*)? terms to the standard form

{ rf f 3
G(R, E) 2] B (r)8Yr ()8 (r)Sa(r) expi— J dr Lousy{h, &, O, a)j (14)
where
Loy = SENE - T () + ¢ (P)(E - V) (r)
+2VE a(#H (P + 97 (2)9(2)) +ia¥(r) (15)

which is indeed of the standard supersymmetric form [ 10]. This Lagrangian is invanant
under super-rotations. The main difierence to the corresponding Lagrangian of the
self-avoiding walk is the positive coupling constant A which is here a measure for the
disorder of the potential, The supersymmetric Lagringian for the saw is recovered if
we put A- ~A which introduces the imaginary unit 1 1n front of the (¢*+ ¢ ) term
(see {10] for the discussion).

4, Summary

In this paper we derived two field theories for randomly directed polymers. The first
one was the bosonic field theory, which uses commutating ficids. The denominator
has been removed by the replica method before the averaot over the random powential
has bean taken. The field theory corresponds to an O(n) symmetric Lagrangian (n =0}
with a negative $*, as it is observad in the electron localization prebiem [7]. One can
decouple the AZ,_, ¢2} term by iniroducing new (order parameter) fields Q, by 2
Gaussian transformation to proceed {urther. Thic can be seen as follows, We can use

a Gaussian transformation
exp(+AJ D) (;532(?‘)455(?})
ab=1

zf f‘li@w)

b=

xcx?("ij é’r i Zo(r)— i a%r Z Qab(F)¢’a(F)¢b(F)) (16)
ab=1 ab=1

..... Somnt

This wiil lead 10 a fieid me(}ry enurmy in the feld qa;,l\r;, singe the d-ints CEIaLIGH is
Guussian and can be canied out. The simple result is

G(R E)=tim | 11 9CQuu(r) expi~L(Qu(r)] (7)

®

n f H b
2qQulN= T J ddr{ﬁGib(miogTr((.ew%abmab)j. (18)
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This 1s now cf the same form as the field theory derived in [7]. The consequences of
this will be left t¢ an extended paper.

The second type of field theory mtroduced two fermionic fields ¢, ¥ to remove
the determinant in the denominator of the Green function. We derived a simple
supersymmetric Lagrangian analogously to that of the ordinary self-avoiding walk [10]
but with an effective attractive coupling constani, which signals the different nature
of the problem. The random poteniial produces an attractive interaction. This can be
seen directly if we write the pattition function of the polymer in the random potential

anr »~nr

Z= J Br(s) enp{—g L' (g:) —JOH an'(s))} (19}

and czlculate the quenched average by the replica method, ie. logZ=
limn_,“ (Z" — 1)/ n. We find immediately:

} H 5? (S)

£ n [N N PN
xexpi— 2:':J. (B‘ ) ds +AZJ‘ J 5(r.(s)— (s} ds ds’} (20}

ab Jo JO

1 &. n random walks which attract each other and themselves with a short range potential
of strength A, This attraction is also present in the corresponding field theories which
are derived .n this paper. In (19} we have the corresponding theory in B(s) space,
which has been studied by several authors. For example the same theory as given in
(13} has been obiained by the study of the problem of polymers at the presence of
fized obstacles [13]. The authors in [13] used 2 variations] principle to approximate
the path integral given in eguation (19). The corresponding annealed problem {moving
obstacles) nas been considered in [14]. The probiem bas also been addressed by scaling
arguments of the Flory type (see e.g. [15, 16] and references therein).

Toe next step is now to use the Beld theories derved in this paper to calculate
physical observables. This will be done in an extended paper.
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